Abstract Viewer

Gonzalez, R.J. and M.R. Preest. 1999. Ionoregulatory specializations for exceptional tolerance of ion-poor acidic waters in the neon tetra (Paracheirodon innesi). Physiological and Biochemical Zoology 72: 156-163. Full Article

To better understand how fish are able to inhabit dilute waters of low pH, we examined ionoregulation in exceptionally acid-tolerant neon tetras (Paracheirodon innesi), which are native to the ion-poor, acidic Rio Negro, Amazon. Overall ion balance was unaffected by 2-wk exposure to pH 4.0 and 3.5. Measurements of unidirectional Na+ fluxes during exposure to pH 3.5 showed that tetras experienced only a mild, ionic disturbance of short duration (24 h) as a result of a stimulation of Na+ efflux. At pH 3.25, Na+ efflux was almost fourfold greater (all fish died within 68 h). At both pHs, active Na+ uptake was not inhibited, and in fact, at pH 3.5, uptake was stimulated. Kinetic analysis of Na+ uptake at pH 6.5 and 3.5 produced virtually identical low Km values and high maximum-transport values. These results confirmed the pH insensitivity of the uptake mechanism and revealed a mechanism well designed to operate in the dilute, acidic waters of the Rio Negro. Na+ influx was only mildly sensitive to amiloride (a Na+ channel blocker), which, along with the pH insensitivity, suggests that Na+ uptake may occur by a novel mechanism. Na+ efflux was reduced by addition of Ca2+ to the test water at pH 6.5, but the effect disappeared at pH 3.5. Exposure to LaCl3 (a strong Ca2+ displacer) also stimulated Na+ efflux. These results suggest that Ca2+ plays a role in determining branchial ion permeability at high pH but that, at low pH, where Na+ efflux is stimulated, alternate, Ca2+-independent mechanisms are employed to control Na+ efflux.

Close This Window