# Majors and Courses

## Physics

The Physics major places a strong emphasis on computational and numerical techniques while still retaining the core material common to all physics majors. Many problems which are not readily solvable using traditional analytic methods will be incorporated into the program, and solutions will invoke numerical integration, computer modeling, and other numerical techniques introduced in the classroom and laboratory.

__MAJOR REQUIREMENTS:__

Math 30, 31, 32 Calculus I, II, III

Differential Equations

Physics 33L, 34L, Principles of Physics or both semesters of the AISS course

Physics 35 Modern Physics

Physics 100 Computational Physics & Engineering

Physics 101 Intermediate Mechanics

Physics 102 Intermediate Electricity and Magnetism

Physics 108* Fortran for Science and Engineering

Physics 114 Quantum Mechanics

Physics 115 Statistical Mechanics

Physics 191, or 188L-190L, or 189L-190L Senior Thesis in Physics

__RECOMMENDED:__

Chemistry 14L Basic Principles of Chemistry

Math 110 Introduction to Engineering Mathematics

* or Computer Science 51, Introduction to Computer Science, or other computer science course chosen in consultation with a faculty advisor.

**Keck Science Common Learning Outcomes**

Students completing a major in the Keck Science Department should demonstrate the ability to:

1. Use foundational principles to analyze problems in nature.

2. Develop hypotheses and test them using quantitative techniques.

3. Articulate applications of science in the modern world.

4. Effectively communicate scientific concepts both verbally and in writing.

__Student Learning Outcomes__

When confronted with an unfamiliar physical or dynamical system or situation, our students should be able to:

- 1. Develop a conceptual framework for understanding the system by identifying the key physical principles, relationships, and constraints underlying the system;
- 2. Translate that conceptual framework into an appropriate mathematical format/model;

- 3. (a) If the mathematical model/equations are analytically tractable, carry out the analysis of the problem to completion (by demonstrating knowledge of and proficiency with the standard mathematical tools of physics and engineering);

(b) If the model/equations are not tractable, develop a computer code and/or use standard software/programming languages (e.g., Matlab, Maple, Python) to numerically simulate the model system;

- 4. Intelligently analyze, interpret, and assess the reasonableness of the answers obtained and/or the model's predictions;
- 5. Effectively communicate their findings (either verbally and/or via written expression) to diverse audiences.

In a laboratory setting, students should be able to:

- 1. Design an appropriate experiment to test out a hypothesis of interest;
- 2. Make basic order-of-magnitude estimates;
- 3. Demonstrate a working familiarity with standard laboratory equipment (e.g., oscilloscopes, DMMs, signal generators, etc.);
- 4. Indentify and appropriately address the sources of systematic error and statistical error in their experiment;
- 5. Have proficiency with standard methods of data analysis (e.g., graphing, curve-fitting, statistical analysis, fourier analysis, etc.);
- 6. Intelligently analyze, interpret, and assess the reasonableness of their experimental results;
- 7. Effectively communicate their findings (either verbally and/or via written expression) to diverse audiences.

## Majors

- Biology
- Biochemistry
- Biophysics
- Chemistry
- Economics-Engineering (CMC)
- Environment, Economics, and Politics (CMC, Scripps)
- Environmental Analysis
- Human Biology (Pitzer)
- Management Engineering(CMC, Pitzer)
- 3-2 Engineering (Scripps)
- Molecular Biology
- Neuroscience
- Organismal Biology
- Physics
- Science and Management